The Proximal Point Algorithm for the P 0 Complementarity Problem 1 Nobuo Yamashita
نویسندگان
چکیده
In this paper we consider a proximal point algorithm (PPA) for solving the nonlinear complementarity problem (NCP) with a P 0 function. PPA was originally proposed by Martinet and further developed by Rockafellar for monotone variational inequalities and monotone operator problems. PPA is known to have nice convergence properties under mild conditions. However, until now, it has been applied mainly to monotone problems. In this paper, we propose a PPA for the NCP involving a P 0 function and establish its global convergence under appropriate conditions by using the Mountain Pass Theorem. Moreover, we give conditions under which it has a superlinear rate of convergence.
منابع مشابه
The Proximal Point Algorithm for the P 0 Complementarity Problem 1
In this paper we consider a proximal point algorithm (PPA) for solving the nonlinear complementarity problem (NCP) with a P 0 function. PPA was originally proposed by Martinet and further developed by Rockafel-lar for monotone variational inequalities and monotone operator problems. PPA is known to have nice convergence properties under mild conditions. However, until now, it has been applied m...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملThe Proximal Point Algorithm with Genuine Superlinear Convergence for the Monotone Complementarity Problem
In this paper, we consider a proximal point algorithm (PPA) for solving monotone nonlinear complementarity problems (NCP). PPA generates a sequence by solving subproblems that are regularizations of the original problem. It is known that PPA has global and superlin-ear convergence property under appropriate criteria for approximate solutions of subproblems. However, it is not always easy to sol...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کامل